Sains Malaysiana 52(11)(2023): 3239-3251
http://doi.org/10.17576/jsm-2023-5211-16
Soft X-Ray Spectra of High Temperature
Argon Plasma for Potential Cell Treatment
(Spektrum X-Ray Lembut Plasma Argon Suhu Tinggi untuk Rawatan Sel Berpotensi)
POH
HUN SENG1, YAP SEONG LING1,*,
TEOW SIN YEANG2,3, TAN HAN YI1 & YAP SEONG SHAN4
1Plasma Technology
Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Biology, College of Science,
Mathematics, and Technology, Wenzhou-Kean University, Ouhai,
Wenzhou, China 325060
3Department of Biological Sciences, College of Science,
Mathematics, and Technology, Kean University, Union, New Jersey 07083
4Department of Physics, Xiamen University Malaysia,
43900 Sepang, Selangor, Malaysia
Received: 14 September 2023/Accepted: 24
October 2023
Abstract
A plasma pinch is created when the
current sheath collapses onto the axis in a plasma focus discharge. The plasma
focus produces a high temperature and high density plasma, emitting soft x-ray
with energy in the range of kiloelectronvolt.
The soft x-ray is suitable for the radiography of biological samples, or as the
source for microscopy or absorption spectroscopy of tissues which are not
visible to conventional x-ray. Similar sources are available only from
synchrotron radiation facilities with fairly low brightness. The argon plasma
pinch produced by a plasma focus was investigated. The x-ray spectra was resolved with a set of filtered detector for the range
of 1 to 20 Å. The plasma electron temperature measured was within 3 keV to 10 keV, with typical plasma
density of 1019/cm3. The discharge energy of 1.5 to 2.5
kJ at 1 mbar argon measured a peak current of 95 kA to 122 kA, and total soft
x-ray energies of 22 to 52 J.
Keywords: Argon plasma; plasma focus; plasma pinch; soft
x-ray; x-ray spectra
Abstrak
Jepitan plasma dihasilkan apabila sarung semasa runtuh ke paksi dalam nyahcas fokus plasma. Fokus plasma menghasilkan suhu tinggi dan plasma ketumpatan tinggi, memancarkan sinar-x lembut dengan tenaga dalam julat kiloelektronvolt. Sinar-x lembut sesuai untuk sampel biologi radiografi atau sebagai sumber untuk mikroskopi atau spektroskopi penyerapan tisu yang tidak boleh dilihat oleh sinar-x konvensional. Sumber yang sama hanya tersedia daripada kemudahan sinaran sinkrotron dengan kecerahan yang agak rendah. Jepitan plasma argon yang dihasilkan oleh fokus plasma telah dikaji. Spektrum sinar-x telah diselesaikan dengan satu set pengesan yang ditapis untuk julat 1 hingga 20 Å. Suhu elektron plasma
yang diukur adalah dalam lingkungan 3 keV sehingga 10 keV dengan ketumpatan plasma biasa 1019/cm3. Tenaga nyahcas 1.5 hingga 2.5 kJ pada 1 mbar argon mengukur arus puncak 95 kA hingga 122 kA dan jumlah tenaga sinar-x lembut 22 hingga 52 J.
Kata kunci: Argon plasma; fokus plasma; jepitan plasma; spektrumsinar-x; sinar-x lembut
REFERENCES
Akel, M., AL-Hawat, S., Ahmad, M., Ballul, Y. & Shaaban, S. 2022.
Features of pinch plasma, electron, and ion beams that originated in the AECS
PF-1 plasma focus device. Plasma 5(2): 184-195.
Ay, Y. 2021. Neon soft x-ray yield optimization in
spherical plasma focus device. Plasma
Physics and Controlled Fusion 63(11):
115009.
Benzi, V., Mezzetti, F., Rocchi, F. & Sumini, M.
2004. Feasibility analysis of a plasma focus neutron source for BNCT treatment
of transplanted human liver. Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms 213: 611-615.
Bernard, A., Cloth, P., Conrads, H., Coudeville, A.,
Gourlan, G., Jolas, A., Maisonnier, C. & Rager, J. 1977. The dense plasma
focus - A high intensity neutron source. Nuclear
Instruments and Methods 145(1):
191-218.
Bhuyan, H., Chuaqui, H., Favre, M., Mitchell, I. &
Wyndham, E. 2005. Ion beam emission in a low energy plasma focus device
operating with methane. Journal of
Physics D: Applied Physics 38(8):
1164.
Castillo-Mejía, F., Milanese, M.M., Moroso, R.L.,
Pouzo, J.O. & Santiago, M.A. 2001. Small plasma focus studied as a source
of hard X-ray. IEEE Transactions on
Plasma Science 29(6):
921-926.
Filippov, N., Filippova, T. & Vinogradov, V. 1962.
Dense high-temperature plasma in a non-cylindrical Z-pinch compression. Nucl. Fusion, Suppl.
Filippov, N.V., Filippova, T.I., Karakin, M.A., Krauz,
V.I., Tykshaev, V.P., Vinogradov, V.P., Bakulin, Y.P., Timofeev, V.V., Zinchenko,
V.F., Brzosko, J.R. & Brzosko, J.S. 1996. Filippov type plasma focus as
intense source of hard X-rays (E/sub x//spl sime/50 keV). IEEE Transactions on Plasma Science 24(4): 1215-1223. https://doi.org/10.1109/27.536568
Housley, D., Hahn, E., Narkis, J., Angus, J., Link,
A., Conti, F. & Beg, F. 2021. Effect of insulator surface conditioning on
the pinch dynamics and x-ray production of a Ne-filled dense plasma focus. Journal of Applied Physics 129(22): 223303.
Isolan, L., Sumini, M., Teodori, F., Bradley, D.,
Jafari, S., Mariotti, F. & Buontempo, F. 2019. Dosimetric analysis and
experimental setup design for in-vivo irradiation with a Plasma Focus
device. Radiation Physics and Chemistry 155: 17-21.
Jahoda, F., Little, E., Quinn, W., Sawyer, G. &
Stratton, T.F. 1960. Continuum radiation in the x ray and visible regions from
a magnetically compressed plasma (Scylla). Physical
Review 119(3): 843.
Jain, J., Araya, H., Moreno, J., Davis, S., Andaur,
R., Bora, B., Pavez, C., Marcelain, K. & Soto, L. 2021. Hyper-radiosensitivity
in tumor cells following exposure to low dose pulsed x-rays emitted from a
kilojoule plasma focus device. Journal of
Applied Physics 130(16):
164902.
Jia, C., Wang, Q., Yao, X. & Yang, J. 2021. The
role of DNA damage induced by low/high dose ionizing radiation in cell
carcinogenesis. Exploratory Research and
Hypothesis in Medicine 6(4):
177-184.
Kalaiselvi, S.M.P. 2016. Fast miniature plasma focus device: Soft x-rays optimization studies
and its application in x-ray lithography. PhD Dissertation
(Unpublished).
Khan, M.G.M. & Wang, Y. 2022. Advances in the
current understanding of how low-dose radiation affects the cell cycle. Cells 11(3): 356.
Knoblauch, P., Raspa, V., Di Lorenzo, F., Clausse, A.
& Moreno, C. 2018. Hard X-ray dosimetry of a plasma focus suitable for
industrial radiography. Radiation Physics
and Chemistry 145: 39-42.
Kubes, P., Paduch, M., Auluck, S., Sadowski, M.,
Cikhardt, J., Klir, D., Kravarik, J., Malir, J., Munzar, V. & Novotný, J.
2023. Observation of filaments in mega-ampere dense plasma focus within pure
deuterium by means of simultaneous schlieren and interferometry diagnostics. Physics of Plasmas 30(1): 012710.
Lee, S. 2014. Plasma focus radiative model: Review of
the Lee model code. Journal of Fusion
Energy 33: 319-335.
Lim, L-K., Yap, S-L., Nee, C-H. & Yap, S-S. 2021.
Dynamics of ion beam emission in a low pressure plasma focus device. Plasma Physics and Controlled Fusion 63(3): 035012.
Lim, L., Yap, S., Lim, L., Neoh, Y., Khan, M., Ngoi,
S., Yap, S.S. & Lee, S. 2016. Parametric optimisation of plasma focus
devices for neutron production. Journal
of Fusion Energy 35(2):
274-280.
Liu, Q., Schneider, F., Ma, L., Wenz, F. &
Herskind, C. 2013. Relative Biologic Effectiveness (RBE) of 50 kV x-rays
measured in a phantom for intraoperative tumor-bed irradiation. International Journal of Radiation
Oncology.Biology.Physics 85(4):
1127-1133. https://doi.org/https://doi.org/10.1016/j.ijrobp.2012.08.005
Lonati, L., Barbieri, S., Guardamagna, I., Ottolenghi,
A. & Baiocco, G. 2021. Radiation-induced cell cycle perturbations: A
computational tool validated with flow-cytometry data. Scientific Reports 11(1):
1-14.
Mather, J.W. 1965. Formation of a high‐density
deuterium plasma focus. The Physics of
Fluids 8(2): 366-377.
Miremad, S.M. & Bidabadi, B.S. 2018. Effect of
inserted metal at anode tip on formation of pulsed X-ray emitting zone of
plasma focus device. Radiation Physics
and Chemistry 145: 58-63.
Mohammadi, M., Piri, A., Manochehrizadeh, M. &
Rawat, R. 2017. Sahand plasma focus emitted more than 35 J in yield neon soft
X-ray. Journal of Fusion Energy 36(6): 240-245.
Patran, A., Tan, L., Stoenescu, D., Rafique, M.,
Rawat, R., Springham, S., Tan, T., Lee, P., Zakaullah, M. & Lee, S. 2005.
Spectral study of the electron beam emitted from a 3 kJ plasma focus. Plasma Sources Science and Technology 14(3): 549.
Poh, H.S., Lee, M.C., Yap, S.S., Teow, S.Y., Bradley,
D. & Yap, S.L. 2020. Potential use of plasma focus radiation sources in
superficial cancer therapy. Japanese
Journal of Applied Physics 59(SH):
SHHB06.
Rainey, M., Black, E., Zachos, G. & Gillespie, D.
2008. Chk2 is required for optimal mitotic delay in response to
irradiation-induced DNA damage incurred in G2 phase. Oncogene 27(7):
896-906.
Sumini, M., Isolan, L., Cremonesi, M. & Garibaldi,
C. 2019. A Plasma Focus device as ultra-high dose rate pulsed radiation source.
Part II: X-ray pulses characterization. Radiation
Physics and Chemistry 164: 108360.
Tartari, A., Da Re, A., Mezzetti, F., Angeli, E. &
De Chiara, P. 2004. Feasibility of X-ray interstitial radiosurgery based on
plasma focus device. Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms 213: 607-610.
van Paassen, H.L. 1971. A time‐resolved ross
filter system for measuring x‐ray spectra in z‐pinch Plasma Focus
devices. Review of Scientific Instruments 42(12): 1823-1824.
Verma, R., Roshan, M., Malik, F., Lee, P., Lee, S.,
Springham, S., Tan, T., Krishnan, M. & Rawat, R. 2008. Compact
sub-kilojoule range fast miniature plasma focus as portable neutron source. Plasma Sources Science and Technology 17(4): 045020.
Yap, S., Wong, C., Choi, P., Dumitrescu, C. & Moo,
S. 2005. Observation of two phases of neutron emission in a low energy plasma
focus. Japanese Journal of Applied
Physics 44(11R): 8125.
Zhang, T., Lin, J., Patran, A., Wong, D., Hassan, S.,
Mahmood, S., White, T., Tan, T., Springham, S. & Lee, S. 2007. Optimization
of a plasma focus device as an electron beam source for thin film deposition. Plasma Sources Science and Technology 16(2): 250.
*Corresponding author; email: yapsl@um.edu.my
|